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Abstract National Taxonomy of Exempt Entities (NTEE)

codes have become the primary classifier of nonprofit

missions since they were developed in the mid-1980s in

response to growing demands for a taxonomy of nonprofit

activities (Herman in Nonprofit and Voluntary Sector

Quarterly 19(3):293–306, 1990, Barman in Social Science

History 37:103–141, 2013). However, the increasingly

complex nature of nonprofits means that NTEE codes may

be outdated or lack specificity. As an alternative, scholars

and practitioners can create a bespoke taxonomy for a

specific purpose by hand-coding a training dataset and

using machine learning classifiers to apply the codes to a

large population. This paper presents a framework for

determining training set sizes needed to scale custom tax-

onomies using machine learning algorithms.

Keywords Nonprofit organizations � Classification �
Machine learning � Custom taxonomies

Introduction

Current taxonomies used to categorize nonprofit missions

are useful but limited in their ability to capture important

dimensions of nonprofit activities. The development of

meaningful new taxonomies in the US context has been

hindered by the daunting task of hand-coding mission

statements for close to 1.5 million active nonprofits. The

IRS release of machine-readable datasets that contain text

fields of mission statements and program service accom-

plishments has created opportunities to leverage natural

language processing and machine learning techniques to

automate classification. Specifically, scholars can develop

new taxonomies using a small sample of organizations,

then use machine learning algorithms to scale classification

by using the hand-coded sample as a training dataset. To

facilitate the responsible dissemination of these tools, we

present a guide for working with nonprofit text as data, a

framework for understanding accuracy of classification as a

function of training dataset size, and benchmarks to guide

data requirements and performance expectations for pro-

jects developing new activity codes using machine learning

techniques.

Most nonprofit studies that group organizations by

activity or subsector currently use the National Taxonomy

of Exempt Entities (NTEE) classification schema, the IRS

Tax Exemption codes, or the International Classification of

NonProfit Organizations codes (ICNPO). However, each

has significant limitations. NTEE codes were developed by

a group of scholars, funders, and nonprofit professionals in

1987 and are assigned to nonprofit organizations by IRS

staff when they receive 501(c) tax-exempt status (Barman,

2013; Herman, 1990). The NTEE classification system

consists of 26 major purpose codes (codes A–Z) and sub-

classification within each, resulting in hundreds of unique
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codes. As such, they are often aggregated into 10 or 12

broad nonprofit subsectors. Each nonprofit is assigned a

single NTEE code, which tends to over-simplify their

dynamic and evolving missions.

Whereas NTEE codes are assigned to a nonprofit based

upon their described activities, the IRS Exempt Purpose

Code is the self-reported qualification for tax-exempt sta-

tus. When filing IRS Form 1023 founders report whether

their organizational purpose fits into one or more of the

eight conditions defined by the US tax code: religious,

educational, scientific, literary, public safety, sports, or

preventing cruelty. These exempt purposes codes represent

the legal justification for tax-exempt status, so organiza-

tions must supply documentation of their activities and

purportedly do not have an incentive to misdirect. Whereas

the NTEE classification was developed by social scientists

drawing upon measurement theory and instrument design

the Exempt Purpose Codes were developed by tax pro-

fessionals for pragmatic and not scholarly purposes.

Finally, the International Classification of Nonprofit

Organizations (ICNPO) was created at a similar time as the

NTEE system, but whereas NTEE codes were developed

for administrative purposes within the context of a single

country and thus reflect the peculiarities of law and society

in the US, the ICNPO was designed with the global vol-

untary or independent sector in mind and was intended for

cross-national comparative work (Salamon & Anheier,

1996).

Third sector scholarship has benefitted in immeasurable

ways from the ability to group organizations into industries

or subsectors. However, classification will always be an

imperfect science. A classification system might be theo-

retically under-specified in a way that does not capture the

most salient dimensions of nonprofit activity. Survey

instruments used to assign organizations to categories can

be confusing or lack specificity, making it difficult to apply

consistently in real world contexts. More importantly, the

sector has changed in the 35 years since the taxonomies

were introduced and missions of specific nonprofits have

evolved.

Some of the major challenges of classification by

humans include validity and reliability. A taxonomy has

validity if it is a meaningful way to organize the world.

Construct validity can be established in a variety of ways

with predictive validity being one of the most common

approaches in social science. Does knowing that a person

belongs to a specific group in a classification system pre-

dict behavior or provide objective information about them?

For example, art nonprofits and human service nonprofits

tend to have distinct revenue models. Knowing their type

reveals useful information.

Reliability describes whether that construct can be

measured consistently with a survey instrument or proto-

col. Important reliability considerations include:

• Inter-coder reliability: how consistently do different

individuals categorize cases when using an instrument

to classify a set of observations?

• Inter-temporal reliability: how stable is a latent con-

struct over time?

• Latent versus hidden constructs: latent constructs are

meaningful traits that are not directly measured but can

be inferred from other variables or specialized instru-

ments (e.g., IQ questionnaires to measure deductive

reasoning). Hidden constructs are also meaningful traits

but they cannot be observed. In this context, activity

codes are latent if they are not directly disclosed by the

nonprofit but observable using mission text. Organiza-

tional traits that are not reliably observable from

mission statements are referred to as hidden classes,

suggesting not that the nonprofit is withholding infor-

mation or that they are not observable with other data,

but that the classification task is not feasible with the

current mission statement data.

New classifications have been introduced in efforts to

improve upon the validity and reliability of dominant

taxonomies or fine-tune specificity of in a specific research

context. They will often leverage data sources and com-

putational techniques new to the field. For example, there

has been a rise in the computational classification of non-

profit mission statements (Fyall et al., 2018; Lecy et al.,

2019a, 2019b; Ma, 2021). Though there are some concerns

with the reliability of such methods, we found machine

learning accuracy to be roughly comparable to inter-coder

reliability results when looking at IRS tax-exempt purpose

codes (Table 1). Specifically, humans and machines per-

form well with the same codes and struggle with the same

codes. Human performance is a more realistic benchmark

for machine learning approaches rather than perfect

performance.

In this paper, we seek to move beyond classifications of

nonprofit activities using generic and static mission codes

and promote the development of bespoke taxonomies that

better capture multidimensional and identity-oriented

classes of activity. Specifically, we propose methods to

assess the accuracy of machine learning models that

automate the classification process in large databases. Can

they be improved by pre-processing of text data using

custom nonprofit lexicon files? How much nonprofit data is

needed to be able to effectively train machine learning

algorithms? And can we leverage these methods to develop

new taxonomies that support a richer, multi-dimensional

approach to the study of nonprofit mission identities?
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Current machine learning algorithms vary in the size of

the training set required to calibrate the models. In addition

to testing its accuracy, sensitivity, and specificity in

applying the new taxonomy, we also explore how these

standard metrics for machine learning algorithms change

when the size of the training set increases, to identify zones

of diminishing return. Preliminary analysis is done using

naı̈ve Bayes models, chosen due to their simplicity and

high performance (Hand & Yu, 2001).

We expect to see the performance of the machine

learning model will increase as the training size increases,

with diminishing returns at thresholds determined by

complexity and type of data and varying by type of algo-

rithm used. We also expect that performing standard text

cleaning steps on the data will also increase model per-

formance. Initial results indicate that the machine learning

model is almost as reliable as humans in coding for tax-

exempt purposes. However, humans are better able to code

missions in a way that balances sensitivity and specificity

as considerations of accuracy.

Our work contributes standards that can be used to

assess the robustness of new mission codes or taxonomies.

Specifically, this paper can be used as a guide for deter-

mining the size of training datasets needed to achieve

reliable automation of mission classification in large

datasets. In addition, the analysis provides greater evidence

of the utility of machine learning techniques for the study

of nonprofits, and the relatively small amounts of data

necessary to accurately develop novel classifications. By

comparing performance on the unidimensional NTEE

codes against the identity-oriented approach of non-ex-

clusive tax-exempt purpose codes, we demonstrate con-

siderations for a much richer analysis of the nonprofit

sector that will yield new insights into activities and

impact.

Study Methodology

The purpose of the study is to develop a framework that

can be used to automate the coding of nonprofit activities

described in mission statements or program activity fields

using machine learning techniques. Specifically, we ana-

lyze the amount of data needed to effectively train a

machine learning algorithm, defining effectiveness as

accuracy of classification.

Existing NTEE and tax-exempt purpose codes are used

to benchmark algorithmic performance as a function of

data preparation steps and training dataset size.

Data

Our data consists of approved 1023-EZ filings for 2018 and

2019.1 The IRS has publicly released meta-data files that

include nonprofit names, mission statements, tax-exempt

purpose codes, and NTEE codes. As described earlier,

nonprofit founders self-report their purpose and NTEE

codes. We omitted any filings that were missing mission

statements and dropped duplicates (nonprofits can resubmit

the form to provide updated information to the IRS). The

study dataset consists of 104,072 newly formed nonprofits.

Classification is done using two text fields that repre-

sents information that is readily available for most non-

profits—their name and mission statement. Nonprofit

names had 29.5 characters on average and mission state-

ments 176.4 characters.

To test the efficiency of the models, we created three

datasets: one with basic cleaning applied (‘‘basic’’), one

cleaned following standard text analysis pre-processing

steps (‘‘standard’’), and one using lexicon files specifically

created for nonprofit missions (‘‘custom;’’ see Paxton et al.,

2019a, 2019b). For ‘‘basic,’’ the only adjustment was to

make all source text lower case, then reduce sparsity (or

cells in the data with a count of 0) by removing features

that appear less than 100 times and in less than 100 doc-

uments (both steps performed on all three datasets); no

words were removed or character strings modified beyond

these two steps. Table 2 presents a side-by-side comparison

Table 1 Comparison of machine learning and human accuracy

Schema Code ML accuracy ICR Difference

Tax-exempt purpose Charity 0.84 0.79 0.05

Tax-exempt purpose Religious 0.92 0.97 - 0.05

Tax-exempt purpose Education 0.75 0.81 - 0.06

Tax-exempt purpose Scientific 0.93 0.99 - 0.06

Tax-exempt purpose Literary 0.96 0.98 - 0.02

Tax-exempt purpose Safety 0.99 1.00 - 0.01

Tax-exempt purpose Sports 0.96 0.96 0.00

Tax-exempt purpose Cruelty 0.96 0.98 - 0.02

Serves vulnerable populations – 0.87

Sample size 3446 100

As reported in Lecy et al. 2019b. The three authors separately coded

the same random sample of 100 nonprofit mission statements, and

reliability is measured using percentage of agreement. The imple-

mented machine learning algorithm is Naı̈ve Bayes. The final schema

is a unique one, which the algorithm was not trained on and was used

to further test ICR

See Appendix. In summary, accuracy reports the ratio of the sum of

true positive and true negative cases divided by the sum of all positive

and negative cases, both true and false

1 Form 1023-EZ meta-data was downloaded from the IRS website:

https://www.irs.gov/charities-non-profits/exempt-organizations-form-

1023ez-approvals
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of cleaning steps. We consider features as elements that we

will use to train the classifier algorithm; in this case, our

features are types, ‘‘the class of all tokens containing the

same character sequence’’ (Manning et al., 2009, p. 22). A

token is a string of text that has been parsed into a mean-

ingful unit. After cleaning, we converted the dataset into a

document frequency matrix and merged it with the original

dataset of approved filings.

The data in ‘‘standard’’ and ‘‘custom’’ were cleaned

using the R package quanteda (Benoit et al., 2018). For

‘‘standard,’’ in addition to converting all source text to

lower case, we applied common text pre-processing steps,

including removing unnecessary white space and charac-

ters that consist of punctuation, numbers, symbols, and

separators, while concatenating characters separate by a

hyphen (e.g., ‘‘self-aware’’ becomes ‘‘selfaware’’). Non-

breaking spaces and common stopwords in the English

language were also removed, using quanteda’s dictionary

(derived from Lewis et al., 2004). We reviewed the 100 n-

grams (or ‘‘short subsequences of characters’’; Manning

et al., 2009, p.26, defining character k-grams) of n = 3, or

3-g, with the highest counts or appearances in the data, and

identified a noticeable boundary at 150 counts. We then

reviewed 3-g that had frequencies of at least 150 to

determine if they made sense to be treated as one token.

This process was repeated with 2-g that had counts of at

least 600, another noticeable boundary. The relevant

character sequences were rewritten as a single token for the

appropriate 3-g and 2-g, in that order. Any spaces

remaining within tokens were then removed, and tokens

were stemmed using the default quanteda stemming tool.

Stemming is an attempt to derive the roots or common

character sequences of words by removing trailing char-

acters that denote distinctions irrelevant for our study; for

example, ‘‘profess’’, ‘‘professing, and ‘‘professes’’ would

thus become ‘‘profess’’, whereas ‘‘professor’’ and ‘‘pro-

fessors’’ would become ‘‘professor.’’

Steps for ‘‘custom’’ deviated for those from ‘‘standard’’

in two ways. Before removing non-letter characters, Paxton

et al. (2019a) mission glossary was used to correct spelling

errors and perform other corrections to the text. Instead of

looking for the most common 3-g and 2-g to condense into

single tokens and applying the default quanteda stemmer,

we applied Paxton et al. (2019b) mission stemmer.

All three datasets then went through the same, final pre-

processing steps. The tax-exempt purpose codes consist of

eight non-mutually exclusive binary categories (a nonprofit

can meet more than one requirement for 501c status). The

NTEE codes were compiled into the 10 NTEE major

groups using the crosswalk provided by the NCCS (Jones,

2019) and converted to 10 new binary variables indicating

if the nonprofit belonged to a given category (1 = yes,

0 = no). The original 1023-EZ dataset also included vari-

ables as to whether an organization is classified as a public

charity or private foundation2 (‘‘onethirdsupportpublic’’,

‘‘onethirdsupportgifts’’) and the activities it has or plans on

engaging in3 (‘‘disasterreliefyes’’, ‘‘donatefundsyes’’).

These 22 variables were merged with the corpus as col-

umns of binary variables prior to applying analytical

techniques.

Techniques

We examine the relationship between the size of a training

dataset and classifier accuracy using a bootstrapping

approach to measure average accuracy and incrementally

increasing the training dataset size. A training dataset of

size N was randomly sampled from the full set of 104,072

documents in each corpus without replacement. We applied

the default Naı̈ve Bayes classifier algorithm in the quanteda

package to predict the 22 categories of interest, or pre-

diction classes, from the features extracted from the mis-

sion text (Benoit et al., 2018). Accuracy was determined

using an independent testing dataset of 20,000 documents

for all iterations. The training dataset started with 4000

processed mission statements, and increased by increments

of 4000 up to a maximum of 80,000 mission statements in

Table 2 Comparison of text pre-processing steps by dataset

Text pre-

processing

steps

Convert to

lowercase

Sparsity

reduction

Remove

white space

Remove

punctuation

Common phrases

converted to n-grams

Word stemming

(quanteda vs. Paxton)

Custom spell-

check (Paxton)

Basic X X

Standard

(quanteda)

X X X X X Q

Custom

(Paxton)

X X X X P P

2 See ‘‘Part IV. Foundation Classification’’ in the instructions for the

1023-EZ form (IRS, 2018).
3 See the entries for line 7 and line 12 in ‘‘Part III. Foundation

Classification’’ (IRS, 2018).
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the training set. Sampling was repeated 100 times in a

bootstrap approach to create a distribution of accuracy

scores associated with each training dataset size. The

procedure was repeated for the binary variables used to

represent each of the tax-exempt purpose codes, NTEE

major group codes, and the several additional organiza-

tional variables from the 1023-EZ meta-data. We ran the

bootstrapped classifier on the simulation cluster of terminal

servers offered by the University of Washington’s Center

for Studies in Demography and Ecology. The bootstrapped

classifier was applied in parallel to the three datasets using

the R packages snow (Tierney et al., 2018) and parallel (R

Core Team, 2020) on 66 cores, and each core was dedi-

cated to predicting one of the 22 classes for each of the

three datasets.

Metrics regarding classifier performance were generated

using the R package caret (Kuhn, 2008). We evaluated the

predictive performance of the algorithm for a given code

based on balanced accuracy, a metric which considers Type

I and Type II errors (see the Appendix). Conventional

accuracy measures for classification algorithms can inflate

performance when using an imbalanced dataset, one in

which there is not an equal number of observations from

the classes in question in the training dataset (Brodersen

et al., 2010). Because we randomly assign cases to the

training dataset such that at least one observation of the

code in question (ex. NTEE, tax-exempt purpose) is pre-

sent in both the training and testing dataset for each iter-

ation, it seems reasonably probable that there will be at

least one instance of the training dataset being imbalanced.

As a result, using the traditional accuracy measure will

result in a biased measure favoring whichever class is more

frequent in our dataset (Brodersen et al., 2010), and so the

balanced accuracy measure provides a more valid measure

of the algorithm’s performance.

We analyzed the performance with a focus on identi-

fying thresholds of marginal returns or gains for improving

the algorithm’s predictive power. We created visualizations

and the figures in this article using the base R visualization

libraries in addition to the packages scales (Wickham &

Seidel, 2020) and ggplot2 (Wickham, 2016).

Results: The Ability to Predict Codes

By applying the techniques above, we compiled 1,848,000

observations capturing data related to:

• 3 datasets

• 22 prediction classes

• 20 increments in training dataset size (from 4000 to

80,000 processed mission statements, in unit increases

of 4000)

• 100 bootstraps at each training dataset size

• 14 different metrics of classifier performance

We then subset the data to only include data for the

balanced accuracy metric and identify means, minima,

maxima, and standard deviations for each distribution of

bootstraps, resulting in a summary dataset of 1320 obser-

vations. Figure 1 visualizes the range of averaged balanced

accuracy values, where boxes summarize the range of

averaged values for prediction classes and boxes are sep-

arate by training dataset size (horizontally) and dataset

(vertically).

When comparing averaged balanced accuracy results for

the 22 prediction classes, we see that, overall, gains in the

mean of the performance metric for a given code can vary

widely. As training dataset size increases in units of 4000

observations, the range of averaged balance accuracy val-

ues seems to increase, though the interquartile range and

median also shift higher. The interquartile range’s upward

movement slows down toward the middle of the range of

training dataset sizes, suggesting a gradual plateauing in

improvement as the size increases.

Training datasets are created by humans manually

coding data and are thus time-intensive and a nontrivial

labor input, especially if codes are cross-validated by

multiple humans. As a result, the goal of this study is to

identify the minimum number of cases needed to achieve a

reasonable threshold of accuracy. Although more training

data are always better, there is a rapidly diminishing return

to new additional units of training data. We can borrow

insights from the mathematics of profit maximization in

micro-economics4 to identify a criterion for optimal train-

ing dataset size. We find that returns to additional units of

training data diminish rapidly once the new unit of training

data fails to improve accuracy by at least 0.5 points (100

being perfect accuracy). The last unit of training data that

achieves at least 0.5 points of accuracy is considered the

optimal size. By comparing optimal training dataset size

across 22 different activity codes and three data prepro-

cessing approaches (basic, standard and custom), we can

produce a reasonable benchmark or rule of thumb for

training dataset size.

There is a possibility of too little salient information or

too much noise in a training dataset creating a hidden

construct scenario, resulting in poor classifier performance.

In these instances, model performance does not improve

significantly with additional training data, so optimal

training dataset size will be low because the return on

investment of additional data is so low. As a result, these

4 Profits are maximized when firm production levels reach the point

of diminishing returns to labor or capital, which is determined by

identifying the point that the second derivative of the production

function is equal to zero.
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cases can deflate estimates of appropriate dataset size and

bias the benchmark downward. To compensate, we impose

a threshold of 60% balanced accuracy and treat models

with lower performance as cases of hidden constructs,

where the input data is insufficient for the classification

task. Our assumption is that the remaining cases above the

60% threshold describe dimensions of nonprofit activity

that are communicated in the mission statements, and thus

performance will be above 60%, i.e., greater than a purely

random chance. Researchers developing new activity codes

would select appropriate text that captures salient dimen-

sions of mission, and thus the set of classes above the

threshold is appropriate for benchmarking purposes.

Our proposed optimal training dataset sizes are pre-

sented in Fig. 2. Of the nine hidden classes, three are

NTEE Major 10 codes (international, mutual benefit, and

unknown), two are tax-exempt purpose codes (public

safety and disaster relief), and the rest are the four

1023-EZ-specific categories. Among the visible codes,

there are seven NTEE major 10 codes and 6 tax-exempt

codes. The highest average balanced accuracy at a given

0.5 threshold size is 86.57%, and the lowest for a visible

class is 60.75%. The highest for a hidden class is 56.07%,

and the lowest overall is 50.11%.

The average optimal training dataset size is around

17,000 mission statements, with some slight variation

between the three data preparation and cleaning methods.

There were six prediction classes for which the three data

preparation methods yielded similar results, four of which

are tax-exempt purpose codes. Standard cleaning reached

the threshold at the smallest size twice, custom once, and

basic three times. Standard did so by the largest margin, an

average of 6000 fewer cases than the nearest cleaning

method.

Two cases stand out in sharp juxtaposition. For Reli-

gious, standard cleaning was the best performer of the three

methods, and the algorithm reached the threshold roughly

twice as fast (or with half as much training data) as with the

other two. This is probably due to the use of n-grams to

capture and denote common concepts consisting of multi-

ple terms, especially ones used frequently in mission

statements of Religious nonprofits. For Scientific, custom

cleaning underperformed basic by * 12,000 observations

and standard by * 8000 observations. This discrepancy is

probably due to some combination of the custom stemmer

and glossary in conjunction with vocabulary idiosyncratic

to the scientific community. The overall low balanced

accuracy of the model suggest that the text is borderline

insufficient to produce reliable, non-random predictions.

Visible NTEE Major 10 classes varied broadly in terms

of which cleaning method yielded the earliest threshold

arrival: the three methods tied twice out of seven classes,

basic was best twice, and standard and custom were each

best once but tied once in out-performing basic. For the

visible tax-exempt purpose classes, the three methods tied

for four out of 6 classes. The extreme cases of Religious

and Scientific were the other two classes.

Fig. 1 Average balanced accuracy for each training dataset size. X-
axis values report the training dataset size. The y-axis values report

the balanced accuracy value. The box plots represent the range of

balanced accuracy scores for each size, averaged by dataset and by

the 22 total NTEE major groups, tax-exempt purpose codes, and

1023-EZ variables
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Discussion

In this paper, we have proposed a framework for devel-

oping more flexible taxonomies using an identity-oriented

conceptualization of nonprofit activities. The use of big

data and machine learning algorithms, as demonstrated

here, opens new avenues for research into nonprofits based

on the intention and scope of their mission. Rather than

treating NTEE codes as a monolith, future research can

work to disaggregate organizations based on patterns of

activity, communities they serve, or other features of their

stated missions or program descriptions. This research

establishes a reasonable benchmark for the amount of

hand-coded training data needed for such endeavors.

Fig. 2 Optimal training dataset

sizes for prediction classes, as

determined by the point at

which increasing the training

dataset size yields less than a

0.5 percentage point increase in

balanced accuracy. The

accuracy metric on the right

reflects model performance

associated with the optimal

training dataset size, not the

maximum accuracy possible

with larger training datasets.

Vertical lines indicate the

average optimal training dataset

size by data preparation step

(corpora dataset). Hidden

classes are those where the

optimal training dataset size

occurs at an average balanced

accuracy of less than 60%.

Please note that data were

partially jittered to improve

visual comprehension. See

tutorial for further justifications

and explanations
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Nonprofit identities are not constrained to a single

dimension of activity. More expressive taxonomies reflect

the reality that organizations, like people, have many

dimensions to their personalities. New taxonomies can be

evaluated using information-theory criterion (whether

information is gained by separating or combining cate-

gories), alternating between categorical (mutually exclu-

sive levels) and multiple binary (not mutually exclusive

levels) dimensions where appropriate, and addressing

issues with dimensionality reduction where appropriate.

As seen above, cleaning methods vary less than expec-

ted in affecting algorithm performance increases. It is

important to note that the three cleaning methods were not

compared against a baseline of raw text. In other words,

any cleaning seems to be useful, at minimum in making the

data importable to algorithms. The unidimensional NTEE

codes’ variation in benefits from cleaning methods suggest

the need to situate cleaning within the context of the pre-

diction class, e.g., identifying n-grams for specific codes

rather than across the full corpus. The non-exclusive tax-

exempt purpose codes mostly showed minimal difference

in cleaning method, yet they also showcased the extremes

of optimal and perhaps inappropriate applications. Con-

solidating 2-g and 3-g as part of the standard methods may

have also contributed to improvements, as this reduces

conceptual sparsity by indicating that multiple character

sequences capture a shared concept. We expect that con-

solidating more n-grams would increase performance

gains, and that using the custom cleaning methods in

addition to consolidating n-grams would yield the greatest

improvements. In general, the data pre-processing steps

were helpful but produced modest gains in accuracy rela-

tive to increases in training dataset size.

Using the set of 22 pre-existing activity codes and a

resampling process that varies the training dataset size, we

have identified a benchmark regarding the training dataset

size for applying a custom taxonomy to nonprofits using

machine learning approaches. All else equal, more training

data is always better. But based on the bootstrapping pro-

cedure, we determine that a rule of thumb of approximately

17,000 mission statements balances algorithmic accuracy

with the labor cost of hand-coding training data. As Fig. 2

also shows, there is some variance in optimal training

dataset size across classification processes, so the proposed

benchmark does not guarantee economical use of data in all

contexts, but 17,000 cases is a reasonable rule of thumb for

planning purposes.

Specificity in language of mission statements may affect

the marginal return from increasing the training dataset

size. In particular, sectors or organizational populations

where the code can be widely applied or experience a large

diversity in mission statements and purpose codes may

experience the least benefit from minimal dataset size

increases: in other words, more data may always be better.

As with using 60% balanced accuracy as a cutoff, scholars

should ensure that the relationship between the mission

statement text and the prediction class is strong enough to

make reliable predictions.

Given the high correlation between machine accuracy

and human ICR reported in Table 1, it is likely that clas-

sification challenges encountered by humans will also

impact machine learning algorithms. Somewhat counter-

intuitively, the optimal training dataset size for models

with lower performance (i.e., more noise due to low

observability of the latent class in the mission text), such as

those for hidden classes, are actually smaller because the

point of diminishing returns is reached faster.

Reflecting on a previous study and the results here, we

note that studies in our field that implement machine

learning algorithms should thus consider appropriate

stopping points to increase training dataset size: at a certain

peak in marginal return, at a percentage for the target

metric (ex. 95% balanced accuracy), or at a plateau in

percentage gains for the target metric (ex. increasing

sample size yields one percentage point increase).

The validity and reliability of custom taxonomies

becomes important when trying to generalize results and

determine whether they can accurately shed light on the

greater population being studied. Our findings can help

inform appropriate strategies to ensure that taxonomies

leveraging the new sets of ‘‘big’’ data available to nonprofit

researchers are sound in their validity, reliability, and

testing. We do note the contextual limitations on our

benchmark and that it was derived from data in English

developed in the U.S., where the use of tax laws to define

nonprofits is arguably idiosyncratic and has directly influ-

enced the data used in this study. More work is needed to

reproduce this approach using mission data in other con-

texts, such as geography (ex. Europe, China), language (ex.

French, German), and taxonomical systems (ex. United

Nations’ International Standard Industrial Classification,

International Classification of Nonprofit Organizations,

North American Industrial Classification Codes).

More fundamentally, mission statements are dynamic—

they can change over time, a fact to be aware of when using

mission statements from longitudinal data consisting of the

same organizations across time, such as the IRS

990-derived datasets. In contrast, NTEE and tax-exempt

purpose codes are static. User input error and static versus

dynamic missions represent two serious research chal-

lenges as more longitudinal nonprofit data becomes avail-

able, underscoring the potential advantages of algorithmic

approaches to recoding data at scale as nonprofit scholars

become more adept at machine learning approaches.
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Appendix: Model Fit Formulas

Metric Formula

Sensitivity SN ¼ TP
TPþFN ¼ TP

P

Specificity SP ¼ TN
TNþFP ¼ TN

N

Precision PREC ¼ TP
TPþFP

Recall SN ¼ TP
TPþFN ¼ TP

P

F1
F1 ¼

2 � PREC � REC
PRECþ REC

Accuracy ACC ¼ TPþTN
TPþTNþFNþFP ¼ TPþTN

PþN

Balanced accuracy
BA ¼ Sensitivityþ Specificityð Þ

2

¼ TP

TPþ FN

� �
þ TN

TNþ FP

� �� �
� 1
2

Error ERR ¼ FPþFN
TPþTNþFNþFP ¼ FPþFN

PþN

Source: Balanced Accuracy’s first formulation comes from Kuhn

(2019). The second formulation comes from Brodersen et al. (2010).

Other formulas come from Saito and Rehmsmeier (n.d.).
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