Lab 05 - Heat Maps

Jesse Lecy

Wednesday, February 18, 2015

This lab introduces heat maps (sometimes known as contour plots) as a way to summarize dense points on a map.

We will use the *stat_density2d* function in the *ggmap* package to add points to our plot. It requires the following arguments that are identical to the *geom_points* function arguments:

Argument	Values
data=	Name of the data set that contains the latitude and longitude coordinates.
aes=	The names of your latitude and longitude variables in the data set.
size =	The size of your points with 1 being default, 2 being double that, etc.
col=	The color of your points. For options type $colors()$.
alpha=	THe level of transparency of your points. Accepts values between 0 (invisible) and 1 (solid).

And three additional arguments:

Argument	Values
bins=	Controls the granularity of aggregation of your data.
geom =	Either $polygon$ or $density2d$ to set the aesthetic.

311 Service Call Data

For this lab we will be using 311 Service Call data from the NYC Open Data project. We are specifically using all 311 calls from 2009 available here:

https://data.cityofnewyork.us/Social-Services/311-Service-Requests-2009/3rfa-3xsf

I have downloaded the data set and posted it as a file on BlackBoard called "311 Service Requests for 2009.csv".

```
# To download from the NYC Open Data site:
# library( RCurl ) package to read data from html files
#
# copy the download link by right-clicking on the 'download as csv' link
#
# url <- "http://data.cityofnewyork.us/api/views/3rfa-3xsf/rows.csv?accessType=DOWNLOAD"
#
# service.calls <- read.csv( file=url, stringsAsFactors=F )
#
# dat.taxi <- service.calls[ service.calls$Complaint.Type == "Taxi Complaint" , ]</pre>
```

setwd("C:/Users/jdlecy/Documents")

dat <- read.csv("311 Service Requests for 2009.csv", stringsAsFactors=F)</pre>

dim(dat) # should have 1,783,133 observations and 52 variables

[1] 1783133 52

names(dat)

##	[1]	"Unique.Key"	"Created.Date"
##	[3]	"Closed.Date"	"Agency"
##	[5]	"Agency.Name"	"Complaint.Type"
##	[7]	"Descriptor"	"Location.Type"
##	[9]	"Incident.Zip"	"Incident.Address"
##	[11]	"Street.Name"	"Cross.Street.1"
##	[13]	"Cross.Street.2"	"Intersection.Street.1"
##	[15]	"Intersection.Street.2"	"Address.Type"
##	[17]	"City"	"Landmark"
##	[19]	"Facility.Type"	"Status"
##	[21]	"Due.Date"	"Resolution.Action.Updated.Date"
##	[23]	"Community.Board"	"Borough"
##	[25]	"X.CoordinateState.Plane."	"Y.CoordinateState.Plane."
##	[27]	"Park.Facility.Name"	"Park.Borough"
##	[29]	"School.Name"	"School.Number"
##	[31]	"School.Region"	"School.Code"
##	[33]	"School.Phone.Number"	"School.Address"
##	[35]	"School.City"	"School.State"
##	[37]	"School.Zip"	"School.Not.Found"
##	[39]	"School.or.Citywide.Complaint"	"Vehicle.Type"
##	[41]	"Taxi.Company.Borough"	"Taxi.Pick.Up.Location"
##	[43]	"Bridge.Highway.Name"	"Bridge.Highway.Direction"
##	[45]	"Road.Ramp"	"Bridge.Highway.Segment"
##	[47]	"Garage.Lot.Name"	"Ferry.Direction"
##	[49]	"Ferry.Terminal.Name"	"Latitude"
##	[51]	"Longitude"	"Location"

Note that the 311 Service Calls data already comes with a Latitude and Longitude variable, so we do not need to geocode the incidents (which is good since there are over 1.7 million observations and we can only geocode 2,500 a day!). Note that the variable names for lat and lon are different than last week.

For this lab we will be looking at various types of complaints within the city to better understand the geographic distribution of specific issues.

Let's take a look at the common types of complaints in our data.

```
as.data.frame( sort(table( dat$Complaint.Type ), decreasing=T ))
```

##		<pre>sort(table(dat\$Complaint.Type), decreasing = T)</pre>
##	HEATING	238995
##	Street Light Condition	130242
##	GENERAL CONSTRUCTION	121048
##	PLUMBING	104931

##	Street Condition	102150
##	PAINT - PLASTER	84324
##	NONCONST	67325
##	Water System	62991
##	General Construction/Plumbing	61288
##	Traffic Signal Condition	60995
##	Blocked Driveway	52163
##	Sewer	49849
##	Dirty Conditions	40732
##	ELECTRIC	38349
##	Building/Use	35495
##	Noise	33707
##	Sanitation Condition	32851
##	Noise - Street/Sidewalk	27923
##	Noise - Commercial	25234
##	Rodent	21622
##	Taxi Complaint	20909
##	Noise - Vehicle	20237
##	Damaged Tree	19738
##	Consumer Complaint	18935
##	Graffiti	17947
##	Missed Collection (All Materials)	17355
##	Derelict Vehicle	15648
##	APPLIANCE	15385
##	Overgrown Tree/Branches	15201
##	Broken Muni Meter	12320
##	Derelict Vehicles	11671
##	Snow	11432
##	Dead Tree	9885
##	Elevator	9098
##	Air Quality	8401
##	DCA / DOH New License Application Request	8364
##	Maintenance or Facility	8241
##	Root/Sewer/Sidewalk Condition	8205
##	Sidewalk Condition	6785
##	Food Establishment	6543
##	Street Sign - Damaged	5931
##	Indoor Air Quality	5897
##	Other Enforcement	5300
##	Broken Parking Meter	5283
##	Vending	4877
	Electrical	4469
	Plumbing	3823
	Water Conservation	3770
	Street Sign - Missing	3537
	Emergency Response Team (ERT)	3121
	Noise - Park	3038
	Litter Basket / Request	2917
	Highway Condition	2893
	Special Projects Inspection Team (SPIT)	2823
	Food Poisoning	2581
	Hazardous Materials	2525
	Vacant Lot	2500
##	Homeless Encampment	2336

##	For Hire Vehicle Complaint	2327
##	Violation of Park Rules	2207
##	Boilers	2198
##	Smoking	2168
##	Unsanitary Animal Pvt Property	2098
##	Lead	1971
##	Disorderly Youth	1926
##	Industrial Waste	1841
##	BEST/Site Safety	1759
##	Special Enforcement	1752
##	Overflowing Litter Baskets	1738
##	Investigations and Discipline (IAD)	1732
##	Sweeping/Missed-Inadequate	1730
##	Animal in a Park	1706
##	Asbestos	1632
##	Drinking	1620
##	Public Payphone Complaint	1435
##	Non-Residential Heat	1388
##	Recycling Enforcement	1371
##	Street Sign - Dangling	1363
##	Noise - House of Worship	1349
##	Water Quality	1349
##	Illegal Tree Damage	1334
##	CONSTRUCTION	1186
##	DOE Complaint or Compliment	1057
##	DOF Property - Payment Issue	1003
##	Window Guard	990
	Safety	982
##	School Maintenance	977
##	Cranes and Derricks	787
	Unsanitary Pigeon Condition	753
	Unleashed Dog	740
	Discipline and Suspension	688
	Found Property	643
	Teaching/Learning/Instruction	635
	Health	613
	Taxi Compliment	591
	Bridge Condition	557
	Posting Advertisement	507
	Ferry Inquiry	475
	DOF Property - City Rebate	463
	City Vehicle Placard Complaint	460
	Scaffold Safety	415
	Bike/Roller/Skate Chronic	404
	Registration and Transfers	392
	Miscellaneous Categories	389
	DOF Property - Owner Issue	372
	Urinating in Public	359
	Bus Stop Shelter Placement	355
	Senior Center Complaint	350
	Tree Work Permit Request	348
	Ferry Complaint	336
	Plant	301
##	Illegal Fireworks	244

##	Illegal Animal Kept as Pet	236
##	Collection Truck Noise	233
##	Panhandling	231
##	Beach/Pool/Sauna Complaint	184
##	Harboring Bees/Wasps	163
##	Mold	144
##	Portable Toilet	112
##	Summer Camp	97
##	Tattooing	87
##	Municipal Parking Facility	83
##	Poison Ivy	81
##	DOF Parking - Payment Issue	77
##	Highway Sign - Damaged	77
##	Parent Leadership	71
##	Special Natural Area District (SNAD)	71
##	Unsanitary Animal Facility	70
##	Animal Facility - No Permit	64
##	Stalled Sites	62
##	Drinking Water	57
##	No Child Left Behind	48
##	Illegal Animal Sold	38
##	Calorie Labeling	37
##	Legal Services Provider Complaint	34
##	Public Toilet	31
##	Ferry Permit	28
##	Bottled Water	24
	Illegal Animal - Sold/Kept	23
	Highway Sign - Missing	21
	X-Ray Machine/Equipment	19
	DOF Property - RPIE Issue	16
	Lifeguard	16
	Highway Sign - Dangling	15
	Parking Card	13
##	Adopt-A-Basket	12
	Radioactive Material	11
	Trans Fat	11
	Tunnel Condition	11
	Transportation Provider Complaint	9
	Squeegee	8
	Forensic Engineering	6
##	Trapping Pigeon	1

Point Map of Taxi Cab Complaints

Let us start by creating a map of all of the taxi complaints in the city. I have already created a subset of the data for taxi complaints and saved it to a separate file in case you would like to follow along.

```
# dat.taxi <- service.calls[ service.calls$Complaint.Type == "Taxi Complaint" , ]
#
# write.csv( dat.taxi, "311 Calls for Taxi Complaint.csv", row.names=F )
dat.taxi <- read.csv( "311 Calls for Taxi Complaint.csv", stringsAsFactors=F )</pre>
```

dim(dat.taxi) # should have 20,909 observations and 52 variables

[1] 20909 52

Since we have the latitude and longitude coordinates we can proceed by mappint points in the usual fashion. I find that grabbing a base map that is centered at Queens gives a better view of all boroughs versus one centered at Manhattan.

library(ggmap)

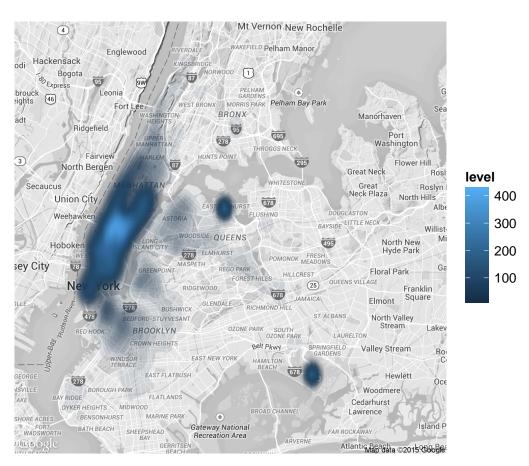
```
## Loading required package: ggplot2
```

```
nyc <- ggmap( get_map( "queens, ny", zoom=11, color="bw" ), extent="device" )</pre>
```

Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=queens,+ny&zoom=11&size=%20640x6 ## Google Maps API Terms of Service : http://developers.google.com/maps/terms ## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=queens,+ny&sensor=fa ## Google Maps API Terms of Service : http://developers.google.com/maps/terms

nyc + geom_point(data=dat.taxi, aes(x=Longitude, y=Latitude), size=2, col="red", alpha=0.1)

Warning: Removed 1694 rows containing missing values (geom_point).



Note that there are warnings produced for missing values. This can mean either that the latitude and longitude data was not available for specific observations (perhaps a complaint was lodged but it did not occure in a specific geography), or else the point is located off of the current base map.

Points Represented as Density - The Heat Map

The mapping functions worked as expected but we have a problem. With over 20,000 points on the map our data is very dense. It is hard to highlight any specific take-aways other than a lot of people complain about taxis, and mostly in Manhattan. Let's see if we can improve upon this.

nyc2

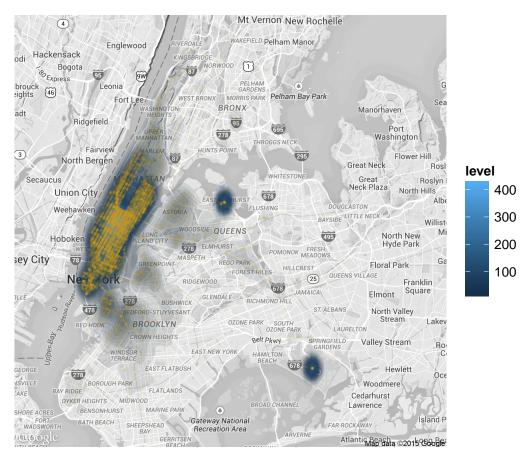
Warning: Removed 1694 rows containing non-finite values (stat_density2d).

Now we have something interesting to work with. We can see that the point data has now been summarized by the intensity of points per geographic unit. The colors represent density - the average number of points per unit space over a region. We can see where events are very dense, and where they are sparse.

This is particularly useful when point data is dense - many points are overlaid on top of each other (like the figure above). As a result of the overlay, we cannot discern the concentration of specific points.

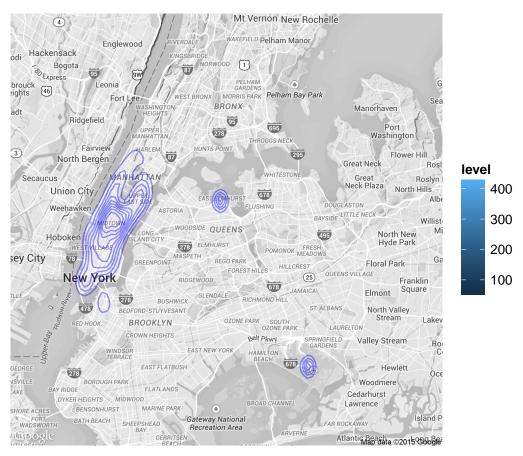
An example of this emerges from the taxi complaints at the airport in the bottom-right quadrant. On the point map the data does not look that significant because it is all concentrated in a small space so it looks like many other points on the map, but once translated into density we can see that the concentration is significant. Similarly, we see that taxi complaints are most intense in Midtown Manhattan, although there are complaints spread across the whole island.

Layering Data


We can enhance the density plots by adding another layer to combine the original point data with the densities. We want to set the alpha high so that we can see specific concentrations of points, but we still see the underlying density structure clearly. I have also chosed a yellow hue that compliments the black and blue colors in the density map.

nyc3 <- nyc2 + geom_point(data=dat.taxi, aes(x=Longitude, y=Latitude), size=1, col="goldenrod", alpha=</pre>

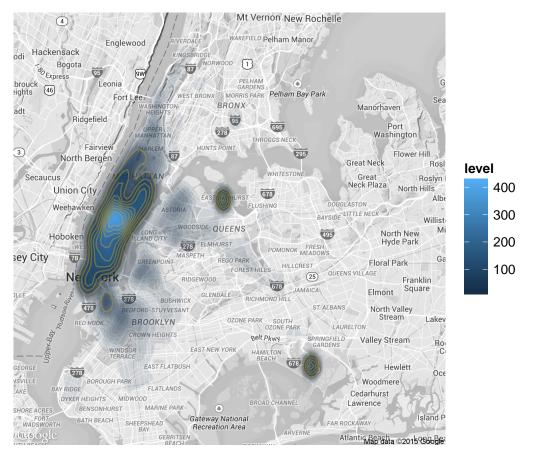
nyc3


Warning: Removed 1694 rows containing non-finite values (stat_density2d).

Warning: Removed 1694 rows containing missing values (geom_point).

Layering data like this helps us pick up on interesting patterns. For example, we can discern the grid structure of the city based upon locations of complaints, and Central Park is also discernable. More data is not always better (we hide some of the density gradiant now), but layering can be a useful visual tool.

This example above demonstrates the use of the "polygon" value in the geom argument. It produces a gradiant where the density plot is represented by smooth transitions between levels. Alternatively, we can use a contour plot representation of the levels using the "density2d" value for the geom argument:


Warning: Removed 1694 rows containing non-finite values (stat_density2d).

We can also get creative and layer the contour plot on top of the gradiant heat map to highlight regions in the data.

nyc3

Warning: Removed 1694 rows containing non-finite values (stat_density2d).

Warning: Removed 1694 rows containing non-finite values (stat_density2d).

In summary, density plots are very useful for describing the concentration of points on a map. It creates a clear representation of the intensity of events over a geography.

Looking Ahead

Next week we will begin working with another convention - aggregating data by administrative units. We will use choropleth maps to represent things like levels of household income in each census tract, or crime rates in each neighborhood. This will require us to use shape files, additional map elements for the administrative boundaries within cities.